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Abstract—The Received Signal Strength Indicator (RSSI) of
Bluetooth Low Energy (BLE) is a popular means for indoor user
localization and tracking as it reflects the transmitter-receiver
distance and is readily available in all current smartphones.
Since fading, shadowing and antenna patterns cause severe
RSSI fluctuations, many RSSI-based localization systems use
fingerprinting instead of parameter estimation based on a channel
model (e.g. trilateration from distance estimates). Fingerprinting
however requires a large effort for training data acquisition and
frequent updates in dynamic environments. In this paper we
focus on wireless access control with BLE. We demonstrate that
a practical implementation of such a tracking system can meet
the typical demands of generic access control problems with low-
complexity parameter estimation techniques, namely trilateration
and optional Kalman filtering. Thereby, satisfactory accuracy is
enabled by diversity (averaging in space, time and frequency),
calibration and appropriate observation space modeling. We find
that including the RSSI directly in the observation space renders
trilateration obsolete, which reduces complexity even further.

Index Terms—access control, Bluetooth Low Energy, Extended
Kalman Filter, IoT, localization, RSSI, tracking

I. INTRODUCTION

Automatic access control is becoming increasingly relevant
in logistics and corporate sectors. Wireless access control
systems have low infrastructure demands, can be implemented
at low cost, are easy to use and have synergies with other
services such as indoor navigation. Bluetooth Low Energy
(BLE) as a promising solution for such systems has been
studied intensively for localization and user tracking. Its low
power demand, low complexity using automatic monitoring
of the Received Signal Strength Indicator (RSSI), and its
widespread availability in consumer devices make it attractive.
However, due to fluctuations in RSSI observations, the accu-
racy of distance estimates and subsequent position estimates
is limited. [1].

A common approach to combat this issue for RSSI-based
position estimation is fingerprinting, i.e. comparing measured
RSSI with previously recorded training data to obtain a
position estimate [2]. This principle has been extended, with
methods like deep learning [3] or K-means clustering [4].
However, fingerprinting requires an extensive training phase
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to allow for reliable position estimation [5] and is sensitive to
changes in the environment [6].

Another common localization method is trilateration, which
has also been demonstrated for BLE: In an ideal environment,
i.e. without shadowing by users or objects, interference, or
multipath propagation, static BLE devices were located with
an accuracy of up to 0.2 m using smoothed and filtered RSSI
values [1] for distance estimation. The setup however did not
resemble scenarios for large-scale user tracking. Dynamic user
tracking under realistic conditions is more challenging and
therefore often supported by additional sensor data from the
BLE device. Bae et al. [7] used BLE and dead reckoning with
information from an inertial measurement unit (IMU) to track
a slowly moving mobile robot with a constrained Extended
Kalman Filter (EKF). However, tracking a less regular and
less predictable human walk imposes a greater challenge.
Classic Bluetooth with a higher transmit power and strong
support of 3D compass data enabled accurate tracking of a
human user (RMSE ≈ 0.7 m) [8] at the cost of limitations
of Classic Bluetooth, such as higher energy demand and a
limited number of devices. RSSI and IMU data were fused in
a computationally expensive Particle Filter.

To address the described shortcomings of the existing ap-
proaches, we propose and demonstrate a BLE RSSI-based ac-
cess control system to show that BLE allows reliable solutions
for access control problems. We provide recommendations for
anchor deployment, diversity measures and calibration. Fur-
thermore, we introduce two EKF-based tracking approaches:
One uses position estimates obtained via trilateration while the
other is directly RSSI-based without explicit position estima-
tion. This direct method has significantly lower computational
complexity as it avoids the optimization problem associated
with trilateration.

The remaining paper is structured as follows: Section II
introduces the access control problem and the relevant signal
processing steps. A discussion of the experimental results for
different movement patterns is provided in Section III. Some
aspects regarding the filters are covered in detail in Section IV.
Section V concludes our work.

II. SYSTEM ARCHITECTURE

We studied the access control problem by means of a
representative setup, in a room whose floor plan is shown
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Fig. 1: Floor plan of the indoor gate scenario

in Fig. 1. It was divided into four zones: The zones B and
C between static receivers at known coordinates (”anchors”)
formed the gate area, i.e. authorized users typically walk
from zone A through the gate via B and C into D. When
a user (”agent”) enters zone B, the system typically needs to
observe the user’s position in order to make a decision (e.g.
unlock/open a door separating zones B and C). Assuming that
certain users are only allowed to access a subset of these zones,
the goal of our user tracking system was to decide which zone
a user was in and where he/she was heading to. Authentication,
identification and authorization of users could be implemented
over the same BLE link.

In the following, we describe the key aspects of our studied
system. Considerations on diversity and anchor density are
based on the findings in [9]. Raspberry Pis mounted on tripods
at the same height (h ≈ 1.2 m) served as BLE observers
(anchors), while an iPhone served as a mobile BLE advertiser
(agent). The anchors were connected to a central entity which
evaluated the measurements. All devices used the BLE 4.2
standard.

A. Channel Model
An accurate channel model is essential to compute distance

estimates from RSSI measurements. Following the exposition
of [9], the RSSI in indoor environments is adequately repre-
sented by a log-normal model

RSSIi(d) = RSSId0 − 10αi log10

(
di
d0

)
+W (1)

for our application featuring temporal, spectral and spacial
diversity as listed in Section II-B. The measured RSSI (in
dBm) at a distance di from the anchor i depends on the
path loss coefficient αi and the RSSI (in dBm) at a reference
distance d0, denoted by RSSId0 . Multipath propagation, shad-
owing and radiation patterns of the antennas cause fluctuations
of the RSSI. Taking these phenomena into account, the i.i.d.
random variable W can be assumed as Gaussian distributed if
sufficient diversity measures are employed. A detailed look at
the statistics of BLE indoor channels is provided in [9].

B. Diversity
Indoor propagation in the 2.4 GHz band exhibits frequency-

selective fading. For advertising and RSSI acquisition, BLE

uses three narrowband channels with large frequency separa-
tion. Thus, RSSI values may vary strongly between the chan-
nels even for static measurements so that reliable unambiguous
distance estimation is impossible [9]. Consequently, we aver-
aged the RSSI values gathered from all three channels over
multiple received advertising packets to exploit both frequency
and time diversity. Furthermore, deploying multiple antennas
per device allows to exploit spatial diversity given a sufficient
distance between the antennas (at least half a wavelength).
These means of diversity reduce RSSI fluctuations and thus
improve the accuracy of distance estimates.

C. Calibration
Various calibration procedures have been proposed, e.g.

in [9], but we choose a simple and straightforward method
here: Path loss coefficient α can be estimated from (1) after
recording a sufficiently large data set at various positions.
In particular, we recorded such calibration datasets in a
calibration phase while walking along known trajectories to
cover different shadowing situations and various angles of the
antenna patterns. Using least squares regression, we estimate
path loss coefficient αi and reference RSSId0,i from the mea-
sured RSSI values and the corresponding distances separately
for each anchor i. These estimated parameters were saved and
later used for distance estimation in the measurement phase.
For the proposed access control gate, an intuitive calibration
trajectory is a straight walk through the gate, as it covers the
area of interest. It can be expected that measurements in online
operation will resemble the calibration measurements well.
The system performance evaluation in Section III is based on
a straight calibration walk through the centre of the gate.

D. Position Estimation and Anchor Selection
The maximum likelihood (ML) position estimate from RSSI

measurements that are according to the log-normal model (1)
is computed as [9]

p̂ML = arg min
p

NA∑
i=1

wi

(
log di(p)− log d̂i

)2
. (2)

where NA denotes the number of anchors. The distance
between anchor i and a position p is denoted di(p), and
d̂i = d0 10(RSSIi−RSSId0/10α) is the corresponding distance
estimate computed from the measurements. The weighting
factors for each anchor wi =

α2
i

σ2
i

for the ML estimate depend
on the variance of received RSSI σ2

i and are obtained from
calibration. Distance estimates based on the model (1) are
more reliable in proximity to an anchor as the RMSE (and the
associated Cramér-Rao lower bound) increases linearly with
the distance [9], [10]. A locally high anchor density yields a
sufficient number of reliable measurements and thus allows to
neglect unreliable estimates from distant anchors. Selecting the
three anchors with the highest RSSI (wi = 1) for trilateration
and discarding the other measurements (wi = 0) instead of
computing the ML estimate has shown to be a more robust
approach in our experiments, which was thus used throughout
the evaluation.
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E. Temporal Filtering

Simple temporal filters can compensate for outliers in
position estimates. Smoothing the position estimates, e.g. by
averaging over multiple measurements, can be seen as a simple
example for a temporal filter. In our most basic tracking
approach, we smoothed localization results with a moving
median coordinate-wise over five position estimates.

More advanced temporal filtering methods include (but are
not limited to) Kalman Filters for user tracking, which have
been widely used in the literature [11]. For linear models, a
simple Kalman Filter is suitable, whereas non-linear models
like in this work require the use of more advanced filters.
Hence we used the Extended Kalman Filter (EKF), which
achieved a satisfactory accuracy at a reasonably low compu-
tational effort compared to, e.g., a Particle Filter.

Kalman filters operate with alternating prediction and mea-
surement steps, which require a state space x and state update
function f , and an observation space z and a measurement
function h, respectively [11]. Throughout this paper, we con-
sider the state vector xk at time index k as

xk =
[
pT
k , ‖vk‖ , φk

]T ∈ R4 (3)

and the state transition function fk(x−
k ) as

fk(x−
k ) =

p−
k + v−

k ∆t∥∥v−
k

∥∥
φ−k

 ∈ R4, (4)

where pk denotes the 2D position vector of the agent, ‖vk‖ the
magnitude of its velocity, and φk its orientation angle relative
to the x-axis of the selected coordinate system. Identifying the
direction of a user’s movement allows to predict his/her inten-
tion, which is useful for various access control applications.
As an example, consider controlling an automatic door, which
opens/unlocks only when an authorized user intends to pass.

Regarding the choice of measurement vector and observa-
tion function, we considered two different approaches (which
give rise to two different user tracking algorithms): (i) a
position-based approach using trilateration with the best three
anchors as described in Section II-D, subsequently denoted
with index ”tri”, and (ii) a directly RSSI-based approach
without explicit position estimation, similar to the method
used in [12] and subsequently denoted with index ”dir”. The
respective measurement vectors are given by

zk,tri = p̂k (5)

zk,dir = [RSSI1,k, . . . , RSSINA,k]
T (6)

whereby p̂k is a position estimate obtained from trilateration.
The respective observation functions are

hk,tri(x̂
−
k ) = p−

k (7)

hk,dir(x̂
−
k ) =


RSSIref,1 − 10α1 log10

(
d1(p

−
k )

dref,1

)
...

RSSIref,NA − 10αNA log10

(
dNA

(p−
k )

dref,NA

)
 (8)

with the previous position p−
k . It shall be noted that an

EKF is optimal for Gaussian-distributed measurements. While
this is not necessarily the case for trilateration results, the
directly RSSI-based approach meets this assumption according
to model (1).

III. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed meth-
ods, the gate constellation was set up in a large room (approx.
19 m× 9 m) as shown in Fig. 2.

Fig. 2: Photo of the gate with six anchors (orange markers) as
used in the later scenarios. For four-anchor operation, unused
devices were switched off.

In our experiments, the raw RSSI values were transferred to
a computer and evaluated in Matlab. As only one RSSI value
was recorded per received BLE packet, we needed to receive
and process several packets to obtain a distance estimate with
sufficient diversity.

As selected trajectories for evaluation, we focussed on typ-
ical movement patterns in a realistic access control scenario,
i.e. a user crossing the gate or turning around at some point
within the gate. Since the gate could be accessed from both
sides, the starting point of the trajectory could be in zone A
or D. We analysed the exemplary case of a user starting in
zone A. For all measurements, the agent device was held in
hand in front of the human body at the height of the anchors,
with the screen pointing upwards. We aimed to identify in
which zone the user is.

The particular scenario of application determines the tol-
erance towards zone localization errors per coordinate. For
instance, the detection of unauthorized intruders in zone C/D
requires higher accuracy in x-direction. In case of an automatic
door between zones B and C, the accuracy in y-direction is
important to decide correctly whether to open the door (user
in zone B/C) or keep it closed (user in zone A/D).

First, we evaluated the performance of a simple approach
with smoothed position estimates. Afterwards, we successively
extended the system to more advanced implementations.

A. Using simple moving median for temporal filtering

1) Straight Crossing Trajectory: First, we investigated a
simple setup of four anchors with one antenna each, i.e. with-
out spatial diversity. Starting with a very generic movement
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Fig. 3: Moving-median-tracking results for a straight walk

trajectory, we evaluated the system performance for a user
walking straight through zones B and C.

As we see from Fig. 3a, position estimates exhibited a
significant spread and showed large deviations from the true
path. However, most position estimates still lay within the gate
area of zones B and C. Clearly, the distance to a zone edge
(here especially the threshold between B and C) determines the
tolerable position estimation error: The closer the agent comes
to a zone edge in x- or y-direction, the smaller the position
error in the respective coordinate may be in order to still detect
the zone correctly. Fig. 3b shows the position estimation errors
over time. The error tolerance in the respective coordinate
is taken into account by the areas marked in gray: Before
crossing the threshold between zones B and C at t ≈ 4.5 s, a
zone detection error occurs if the x-coordinate of the estimated
position is too large. Afterwards, it may not be estimated too
low to avoid a zone detection error. Similarly, the y-coordinate
must neither be estimated too large nor too small. From
Fig. 3b, we can see that in spite of errors beyond 2 m, most
position estimates were located in the correct zone. With a total
number of four zone detection errors in x-direction and five
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Fig. 4: Moving-median-tracking results for a turn

in y-direction occurring in the centre of the gate, the simple
system performed well for this trajectory. With a trajectory
matching the calibration walk and a considerable distance to
most zone borders, the scenario described previously is not
particularly demanding in terms of zone detection.

2) Turn Trajectory: A more challenging situation evolves if
the user turns around within the area of interest, right (in our
case: 12 cm) before the border of zones B and C, as shown
in Fig. 4a. The most critical part of this movement pattern is



the section along the zone border between B and C, as the
error tolerance in x-direction is very low for this part of the
trajectory. When the user is walking back towards zone A, the
proximity to the upper border between A and B reduces the
tolerance in y-direction. Furthermore, the calibration trajectory
and the path under observation did not match anymore after
the first turn.

Looking at the error distribution over time (Fig. 4b and
4c), we observe that after the first turn, the user was falsely
detected in zone C (error in x-direction), while during the
return towards A, errors in y-direction occurred, mostly due
to the proximity to the zone edge of A/B.

In order to improve the poor position estimation, we then
used spatial diversity in addition to frequency and time di-
versity by equipping all anchors with two antennas spaced
about 2λ = 24 cm apart, as shown in Fig. 2. Furthermore, we
deployed two additional anchors at the zone border between B
and C (depicted in light purple in Fig. 4a). As a consequence
of the additional anchors and spatial diversity, the number of
zone detection errors in y-direction was reduced significantly
with this advanced setup.

Note that distance estimates in radial direction from the
anchor are most accurate [9]. However, in order not to obstruct
the gate, anchors must not be placed at either end of the
aisle, which would yield accuracy improvement in x-direction.
Placing the anchors on the ceiling could help to mitigate this
problem, but extends the scenario to 3D and may be subject
to architectural limitations such as too high ceilings.

B. Using EKF without IMU

Various wireless access control situations require tracking
the user’s movement over time, which was not feasible from
the previous results and thus demanded further extension of
the six-anchor-system with smoothed position estimation. As
pointed out in Section II-E, the EKF does not smooth RSSI
measurements but tracks the agent’s state over time. This
allows a prediction of the user’s movement direction and in
consequence assumptions of his/her intention. In the following,
we look at the previously discussed movement patterns again
to evaluate the performance of the two EKF approaches.

1) Straight Crossing Trajectory: Looking at the straight
walk through the gate again, we observe from Fig. 5a that
both filters were able to correct an initialization offset (for
details see Section IV-B) and tracked the user accurately with
small errors in both coordinate directions (see Fig. 5b). Thus,
it was possible here to predict the user’s intention, which
enables orientation-dependent decisions such as automatic
door opening.

As the markers in Fig. 5a show, the trilateration-based
method followed the true path in zone C with a certain
delay, which induced four zone detection errors. The directly
RSSI-based approach showed no such lag and consequently
yielded only two errors after the transition from zone B to C.
However, both filters performed well in this experiment. The
motion model of the filters matched the agent’s movement
and compensated for outliers in position estimation and RSSI,
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Fig. 5: EKF tracking results for a straight walk

which otherwise would have deteriorated the performance of
the trilateration-based and the direct approach, respectively.

2) Turn Trajectory: Similar results could be observed for
the more challenging situation of the turn. As we can see from
Fig. 6a, both filter variants corrected the initialization offset
to a certain extend and roughly followed the true trajectory.
The inherent inertia of the filters is also clearly visible, as
both trajectories cross the border between zones B and C. The
linear movement model of the EKF failed to quickly adapt
to sudden changes of the movement patterns, such as stops
or turns. As the agent was assumed to move on in a straight
way, several measurements were required to correct the faulty
predictions of the model. This inertia caused zone detection
errors, as Fig. 6b and 6c show: Errors occurred from the time
of the first turn until the orientation in the state vector was
corrected and the position estimates were in zone B again,
i.e. after about 2 s (direct) to 3 s (trilateration). Errors in y-
direction did not occur, as outliers of the position estimates
were compensated for by the movement model prediction.

With the lower computational effort, the higher tracking
accuracy (cf. Fig. 6a), the lower inertia and thus fewer zone
detection errors (24 vs. 43), the direct approach outperformed
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Fig. 6: EKF tracking results for a turn

the position-based method in this experiment. It shall further
be noted here that trust in prediction and measurement is
weighted by the Q- and R-matrices of the Kalman filter [11],
which are commonly determined empirically. Especially the
reliability of measurements has to be determined according
to the setup: For instance, a higher anchor density improves
reliability of RSSI measurements.

C. Using EKF with IMU

For orientation-dependent decision making in access control
scenarios, the EKF approaches presented here are sufficient in
most cases, especially the directly RSSI-based approach. For
very challenging scenarios like unexpected movements at zone
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Fig. 7: IMU-supported EKF tracking results for a turn

borders, additional information from the IMU can support the
tracking, as shown in the following.

Using a smartphone as a mobile device comes with the
advantage of an available inertial measurement unit (IMU).
Adding the user’s movement speed ṽ and the IMU compass
angle to the observation space (5),(6) and the measurement
function of the filter (7),(8) fuses the sensor data with the
position and RSSI. For a measurement of ṽ, pedestrian dead
reckoning with step detection [13] was used. After measure-
ment, the IMU data was transferred to the computer together
with the RSSI measurements.

Comparing the IMU-supported tracking results for the turn
trajectory with the purely RSSI-based filter performance, we
observe a significant improvement: The change of the agent’s
orientation was detected earlier and thus no zone detection
errors occurred in this case. Our observations thus confirmed
the performance gain mentioned in the literature. As both RSSI
as well as IMU data have to be present at the same unit for
real-time tracking, a constant transfer of the agent’s sensor
data to the infrastructure is required. However, relying on
the information broadcasted by the agent for security-related
applications is risky as transmitted data may be manipulated.



IV. ADDITIONAL CONSIDERATIONS

A. Calibration

In our experiments, using a calibration dataset obtained over
a walk which mismatches the tracked movement induced more
zone detection errors. In real-world applications, it is easily
distinguishable from which side a user enters the gate. Thus
we recommend an adaptive calibration scheme, which selects
an appropriate set of system parameters from a stored pool of
calibration data based on the starting point of the user. The
calibration dataset could even be changed in online operation
based on the user’s movement: After a turn, calibration data
could be switched to a parameter set obtained from a walk in
the opposite direction.

B. Filter Initialization

The assumed initial state x0 of the filters has a crucial
impact on the tracking performance. For a realistic evaluation
of results, we need to assume some uncertainty of the initial
state: The starting point for the filter was chosen randomly
within a radius of 1 m around the true position. The initial
movement speed was a random value between 0 and 1.6 m

s ,
and the agent’s orientation was randomly chosen in an interval
of ± 20◦ around the true orientation. A priori knowledge about
the surroundings, e.g. the position of doors through which a
user enters the scene, can be used to determine suitable strict
bounds for the initial state in a separate step.

C. Computational Complexity

Real-time tracking requires a fast computation of the posi-
tion estimate. Thus, it is worthwhile to discuss the computa-
tional complexity of the proposed trilateration-based and direct
approach. As trilateration estimates the position explicitly, a
non-linear optimization problem is solved numerically in every
step of the filter (cf. (2)). In comparison, the directly RSSI-
based approach estimates the position implicitly by applying
the path loss model in (8). The Jacobian of the measurement
function, which is required for the linearisation of the problem
in the EKF, is pre-calculated analytically and kept in memory.
Consequently, the computationally expensive part reduces to
a matrix inversion in the Kalman gain computation [11]. This
results in a significantly reduced computational complexity for
the directly RSSI-based approach.

V. CONCLUSION

In this paper, we have shown that BLE is a suitable
technology for access control applications by demonstrating
a low-complexity BLE-based user tracking system, includ-
ing a suitable anchor constellation, diversity measures and
recommendations for calibration. A system evaluation for
various access control scenarios is possible with our pro-
posed zone concept. In applications which require an accurate
”inside/outside”-decision such as intruder detection, trilater-
ation with a temporal moving-median filter already yields
reliable decisions. If the user’s intention needs to be predicted,
e.g. in order to open automatic doors for authorized users,
more advanced temporal filtering is required. Our directly

RSSI-based EKF outperformed the computationally more ex-
pensive trilateration-based approach in the scenarios under
investigation. We further demonstrated how additional sensor
information from the agent’s IMU can improve the tracking
performance in security-wise uncritical applications.

ACKNOWLEDGMENT

We would like to thank C. Sulser for his support with mea-
surements, and S. Pfister for developing the iOS application.

REFERENCES

[1] Q. H. Nguyen, P. Johnson, T. T. Nguyen, and M. Randles, “Optimized
indoor positioning for static mode smart devices using BLE,” in 2017
IEEE 28th Annual International Symposium on Personal, Indoor, and
Mobile Radio Communications (PIMRC), Oct 2017, pp. 1–6.

[2] J. Pelant, Z. Tlamsa, V. Benes, L. Polak, O. Kaller, L. Bolecek, J. Kufa,
J. Sebesta, and T. Kratochvil, “BLE device indoor localization based on
RSS fingerprinting mapped by propagation modes,” in 2017 27th Inter-
national Conference Radioelektronika (RADIOELEKTRONIKA), April
2017, pp. 1–5.

[3] W. Zhang, R. Sengupta, J. Fodero, and X. Li, “DeepPositioning:
Intelligent Fusion of Pervasive Magnetic Field and WiFi Fingerprinting
for Smartphone Indoor Localization via Deep Learning,” in 2017 16th
IEEE International Conference on Machine Learning and Applications
(ICMLA), Dec 2017, pp. 7–13.

[4] D. Liang, Z. Zhang, A. Piao, and S. Zhang, “Indoor localization
algorithm based on iterative grid clustering and AP scoring,” in 2015
IEEE 26th Annual International Symposium on Personal, Indoor, and
Mobile Radio Communications (PIMRC), Aug 2015, pp. 1997–2001.

[5] S. Yiu, M. Dashti, H. Claussen, and F. Perez-Cruz,
“Wireless RSSI fingerprinting localization,” Signal Processing,
vol. 131, pp. 235 – 244, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0165168416301566

[6] O. Renaudin, T. Zemen, and T. Burgess, “Ray-Tracing Based Fin-
gerprinting for Indoor Localization,” in 2018 IEEE 19th International
Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), June 2018, pp. 1–5.

[7] H. Bae, J. Oh, K. Lee, and J. H. Oh, “Low-cost indoor positioning
system using BLE (Bluetooth low energy) based sensor fusion with
constrained extended Kalman Filter,” in 2016 IEEE International Con-
ference on Robotics and Biomimetics (ROBIO), Dec 2016, pp. 939–945.

[8] S. P. Subramanian, J. Sommer, F. P. Zeh, S. Schmitt, and W. Rosenstiel,
“PBIL PDR for scalable Bluetooth Indoor Localization,” in 2009 Third
International Conference on Next Generation Mobile Applications, Ser-
vices and Technologies, Sept 2009, pp. 170–175.

[9] H. Schulten, M. Kuhn, R. Heyn, G. Dumphart, F. Trösch, and A. Wit-
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